A Comparison of Post-Processing Techniques for Biased Random Number Generators
نویسندگان
چکیده
In this paper, we study and compare two popular methods for postprocessing random number generators: linear and Von Neumann compression. We show that linear compression can achieve much better throughput than Von Neumann compression, while achieving practically good level of security. We also introduce a concept known as the adversary bias which measures how accurately an adversary can guess the output of a random number generator, e.g. through a trapdoor or a bad RNG design. Then we prove that linear compression performs much better than Von Neumann compression when correcting adversary bias. Finally, we discuss on good ways to implement this linear compression in hardware and give a field-programmable gate array (FPGA) implementation to provide resource utilization estimates.
منابع مشابه
Bad and Good Ways of Post-processing Biased Physical Random Numbers
Algorithmic post-processing is used to overcome statistical deficiencies of physical random number generators. We show that the quasigroup based approach for post-processing random numbers described in [MGK05] is ineffective and very easy to attack. We also suggest new algorithms which extract considerably more entropy from their input than the known algorithms with an upper bound for the numbe...
متن کاملDesign of low power random number generators for quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are a promising nanotechnology to implement digital circuits at the nanoscale. Devices based on QCA have the advantages of faster speed, lower power consumption, and greatly reduced sizes. In this paper, we are presented the circuits, which generate random numbers in QCA. Random numbers have many uses in science, art, statistics, cryptography, gaming, gambli...
متن کاملDesign of low power random number generators for quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are a promising nanotechnology to implement digital circuits at the nanoscale. Devices based on QCA have the advantages of faster speed, lower power consumption, and greatly reduced sizes. In this paper, we are presented the circuits, which generate random numbers in QCA. Random numbers have many uses in science, art, statistics, cryptography, gaming, gambli...
متن کاملPseudo-random number generators for Monte Carlo simulations on ATI Graphics Processing Units
Basic uniform pseudo-random number generators are implemented on ATI Graphics Processing Units (GPU). The performance results of the realized generators (multiplicative linear congruential (GGL), XOR-shift (XOR128), RANECU, RANMAR, RANLUX and Mersenne Twister (MT19937)) on CPU and GPU are discussed. The obtained speed-up factor is hundreds of times in comparison with CPU. RANLUX generator is fo...
متن کاملCryptographic random and pseudorandom data generators
This dissertation thesis deals with cryptographic random and pseudorandom data generators in mobile computing environments (such as mobile phones, personal digital assistants, cryptographic smartcards). These mobile devices are typically bounded by the amount of energy, performance, memory or even silicon area. This lack of resources leads to very limited computing environments with: a) limited...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011